254 research outputs found

    From lean production to lean 4.0: a systematic literature review with a historical perspective

    Get PDF
    Over recent decades, the increasing competitiveness of markets has propagated the term “lean” to describe the management concept for improving productivity, quality, and lead time in industrial as well as services operations. Its overuse and linkage to different specifiers (surnames) have created confusion and misunderstanding as the term approximates pragmatic ambiguity. Through a systematic literature review, this study takes a historical perspective to analyze 4962 papers and 20 seminal books in order to clarify the origin, evolution, and diversification of the lean concept. Our main contribution lies in identifying 17 specifiers for the term “lean” and proposing four mechanisms to explain this diversification. Our research results are useful to both academics and practitioners to return to the Lean origins in order to create new research areas and conduct organizational transformations based on solid concepts. We conclude that the use of “lean” as a systemic thinking is likely to be further extended to new research fields

    3D measurement simulation and relative pointing error verification of the telescope mount assembly subsystem for the large synoptic survey telescope

    Get PDF
    An engineering validation of a large optical telescope consists of executing major performing tests at the subsystem level to verify the overall engineering performance of the observatory. Thus, the relative pointing error verification of the telescope mount assembly subsystem is of special interest to guarantee the absolute pointing performance of the large synoptic survey telescope. This paper presents a new verification method for the relative pointing error assessment of the telescope mount assembly, based on laser tracker technology and several fiducial points fixed to the floor. Monte-Carlo-based simulation results show that the presented methodology is fit for purpose, even if floor movement occurs due to temperature variation during the measurement acquisition process. A further research about laser tracker technology integration into the telescope structure may suggest that such laser tracker technology could be permanently installed in the telescope in order to provide an active alignment system that aims to detect and correct possible misalignment between mirrors or to provide the required mirror positioning verification accuracy after maintenance activities. The obtained results show that two on-board laser tracker systems combined with eight measurement targets could result in measurement uncertainties that are better than 1 arcsec, which would provide a reliable built-in metrology tool for large telescopes

    Providing resilience to UAV swarms following planned missions

    Get PDF
    As we experience an unprecedented growth in the field of Unmanned Aerial Vehicles (UAVs), more and more applications keep arising due to the combination of low cost and flexibility provided by these flying devices, especially those of the multirrotor type. Within this field, solutions where several UAVs team-up to create a swarm are gaining momentum as they enable to perform more sophisticated tasks, or accelerate task execution compared to the single-UAV alternative. However, advanced solutions based on UAV swarms still lack significant advancements and validation in real environments to facilitate their adoption and deployment. In this paper we take a step ahead in this direction by proposing a solution that improves the resilience of swarm flights, focusing on handling the loss of the swarm leader, which is typically the most critical condition to be faced. Experiments using our UAV emulation tool (ArduSim) evidence the correctness of the protocol under adverse circumstances, and highlight that swarm members are able to seamlessly switch to an alternative leader when necessary, introducing a negligible delay in the process in most cases, while keeping this delay within a few seconds even in worst-case conditions

    p166 links membrane and intramitochondrial modules of the trypanosomal tripartite attachment complex.

    Get PDF
    The protist parasite Trypanosoma brucei has a single mitochondrion with a single unit genome termed kinetoplast DNA (kDNA). Faithfull segregation of replicated kDNA is ensured by a complicated structure termed tripartite attachment complex (TAC). The TAC physically links the basal body of the flagellum with the kDNA spanning the two mitochondrial membranes. Here, we characterized p166 as the only known TAC subunit that is anchored in the inner membrane. Its C-terminal transmembrane domain separates the protein into a large N-terminal region that interacts with the kDNA-localized TAC102 and a 34 aa C-tail that binds to the intermembrane space-exposed loop of the integral outer membrane protein TAC60. Whereas the outer membrane region requires four essential subunits for proper TAC function, the inner membrane integral p166, via its interaction with TAC60 and TAC102, would theoretically suffice to bridge the distance between the OM and the kDNA. Surprisingly, non-functional p166 lacking the C-terminal 34 aa still localizes to the TAC region. This suggests the existence of additional TAC-associated proteins which loosely bind to non-functional p166 lacking the C-terminal 34 aa and keep it at the TAC. However, binding of full length p166 to these TAC-associated proteins alone would not be sufficient to withstand the mechanical load imposed by the segregating basal bodies

    Isolation of a novel aquaglyceroporin from a marine teleost (Sparus auratus) Function and tissue distribution

    Get PDF
    The aquaporins (formerly called the major intrinsic protein family) are transmembrane channel proteins. The family includes the CHIP group, which are functionally characterised as water channels and the GLP group, which are specialised for glycerol transport. The present study reports the identification and characterisation of a novel GLP family member in a teleost fish, the sea bream Sparus auratus. A sea bream aquaporin (sbAQP) cDNA of 1047·bp and encoding a protein of 298·amino acids was isolated from a kidney cDNA library. Functional characterization of the sbAQP using a Xenopus oocyte assay revealed that the isolated cDNA stimulated osmotic water permeability in a mercury-sensitive manner and also stimulated urea and glycerol uptake. Northern blotting demonstrated that sbAQP was expressed at high levels in the posterior region of the gut, where two transcripts were identified (1.6·kb and 2·kb), and in kidney, where a single transcript was present (2·kb). In situ hybridisation studies with a sbAQP riboprobe revealed its presence in the lamina propria and smooth muscle layer of the posterior region of the gut and in epithelial cells of some kidney tubules. sbAQP was also present in putative chloride cells of the gill. Phylogenetic analysis of sbAQP, including putative GLP genes from Fugu rubripes, revealed that it did not group with any of the previously isolated vertebrate GLPs and instead formed a separate group, suggesting that it may be a novel GLP member.This work was supported by project PRAXIS XXI/2/2.1/BIA/211/94 from the Portuguese National Science and Technology Foundation (FCT), co-financed by EU structural funds, DG-Fisheries Project Q5RS-2002-00784 (CRYOCYTE) and an EU Biotech grant (QLRT2000-00778). C.R.A.S., J.C.R.C. and J.F. were in receipt of FCT fellowships PRAXIS XXI/BPD/22040/99, PRAXIS XXI/BD/19925/99BPD/22033/99, respectively

    A Testpart for Interdisciplinary Analyses in Micro Production Engineering

    Get PDF
    AbstractIn 2011, a round robin test was initiated within the group of CIRP Research Affiliates. The aim was to establish a platform for linking interdisciplinary research in order to share the expertise and experiences of participants all over the world. This paper introduces a testpart which has been designed to allow an analysis of different manufacturing technologies, simulation methods, machinery and metrology as well as process and production planning aspects. Current investigations are presented focusing on the machining and additive processes to produce the geometry, simulation approaches, machine analysis, and a comparison of measuring technologies. Challenges and limitations regarding the manufacturing and evaluation of the testpart features by the applied methods are discussed.Video abstrac

    Characterization of Biomaterials Intended for Use in the Nucleus Pulposus of Degenerated Intervertebral Discs

    Get PDF
    Abstract Biomaterials for regeneration of the intervertebral disc must meet complex requirements conforming to biological, mechanical and clinical demands. Currently no consensus on their characterization exists. It is crucial to identify parameters and their method of characterization for accurate assessment of their potential efficacy, keeping in mind the translation towards clinical application. This review systematically analyzes the characterization techniques of biomaterial systems that have been used for nucleus pulposus (NP) restoration and regeneration. Substantial differences in the approach towards assessment became evident, hindering comparisons between different materials with respect to their suitability for NP restoration and regeneration. We have analyzed the current approaches and identified parameters necessary for adequate biomaterial characterization, with the clinical goal of functional restoration and biological regeneration of the NP in mind. Further, we provide guidelines and goals for their measurement

    Assessing the life cycle environmental impacts of titania nanoparticle production by continuous flow solvo/hydrothermal synthesis

    Get PDF
    Continuous-flow hydrothermal and solvothermal syntheses offer substantial advantages over conventional processes, producing high quality materials from a wide range of precursors. In this study, we evaluate the “cradle-to-gate” life cycle environmental impacts of alternative titanium dioxide (TiO₂) nanoparticle production parameters, considering a range of operational conditions, precursors, material properties and production capacities. A detailed characterisation of the nano-TiO₂ products allows us, for the first time, to link key nanoparticle characteristics to production parameters and environmental impacts, providing a useful foundation for future studies evaluating nano-TiO₂ applications. Five different titanium precursors are considered, ranging from simple inorganic precursors, like titanium oxysulphate (TiOS), to complex organic precursors such as titanium bis(ammonium-lactato)dihydroxide (TiBALD). Synthesis at the laboratory scale is used to determine the yield, size distribution, crystallinity and phase of the nanoparticles. The specifications and operating experience of a full scale plant (>1000 t per year) are used to estimate the mass and energy inputs of industrial scale production for the life cycle assessment. Overall, higher process temperatures are linked to larger, more crystalline nanoparticles and higher conversion rates. Precursor selection also influences nano-TiO₂ properties: production from TiOS results in the largest particle sizes, while TiBALD achieves the smallest particles and narrowest size distribution. Precursor selection is the main factor in determining cradle-to-gate environmental impacts (>80% in some cases), due to the production impact of complex organic precursors. Nano-TiO2 production from TiOS shows the lowest global warming potential (GWP) (<12 kg CO₂-eq. per kg TiO₂) and cumulative energy demand (CED) (<149 MJ kg¯¹ TiO₂) due to the low environmental impact of the precursor, the use of water as a solvent and its high yield even at lower temperatures. Conversely, the TiBALD precursor shows the highest impact (86 kg CO₂-eq. per kg TiO₂ and 1952 MJ kg¯¹ TiO₂) due to the need for additional post-synthesis steps and complexity of precursor manufacturing. The main purpose of this study is not a direct comparison of the environmental impacts of TiO₂ nanoparticles manufactured utilizing various precursors under different conditions, but to provide an essential foundation for future work evaluating potential applications of nano-TiO₂ and their life cycle environmental impacts

    Single layer mortars with microencapsulated PCM: study of physical and thermal properties, and fire behaviour

    Get PDF
    tPhase change materials are a promising strategy to reduce energy consumption in a wide range of appli-cations including the building sector. Many studies have been done to evaluate the impact of PCM onthermal properties of building materials, however there exists little information on the influence ofPCM on other properties of the support materials. This knowledge is necessary to determine the fea-sibility to apply and use building materials containing PCM. In this paper, the effect of the addition ofdifferent percentages of microencapsulated phase change material on the properties of two commercialsingle layer mortars has been studied. Physical and thermal properties as well as fire reaction have beenevaluated.Peer ReviewedPostprint (author's final draft

    Continuous synthesis of dispersant-coated hydroxyapatite plates

    Get PDF
    A continuous flow hydrothermal synthetic route which allows the direct “in situ” capping/coating of hydroxyapatite nanoplates with functional dispersants in a single stage is reported. The methodology induced crystallisation by rapid mixing of streams of preheated water and solutions of reagents in water, whilst the hydrophobic surface modification of the HA platelets was achieved without morphological disruption. The effect of adding the hydrocarbon either before or after the HA platelet formation point has also been assessed, proving that the presence of surfactant at the reaction site does not interfere with the formation of HA and allows for a more efficient binding and extraction of the inorganic materials. The coupling mechanisms between the surfactant and the HA surface have been proposed to be a mixture of covalent and electrostatic interactions (i.e. all forms of chemisorption). This synthesis route is fully scalable to pilot (10 tons per year) and industrial (1000 tons per year) scales
    • …
    corecore